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SUMMARY

The theory and conditions for stabilityof a satellite

with a 24-hour period are given. Bohlin's resonance theory

was applied to obtain the solution. Itis shown that the in-

tegrals of the problem can be represented in series form,

with respect to the small parameter w, which is propor-

tionalto the mean motion of the criticalargument in a non-

resonance case. Expressions for the period of libration and

the mean motion of the critical argument in the unstable

case are also given. A system of formulas is presented

which can be used to compute any particular case.
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ON THE MOTION OF A 24-HOUR SATELLITE*

by

Peter Musen and Ann E. Bailie

Goddard Space Flight Center

INTRODUCTION

In this paper the authors have investigated the stability conditions of a satellite with a period of

revolution approximately equal to one day. The criteria for stability are obtained in a form valid for

large inclinations--provided that the eighth power of the eccentricity is negligible.

THE DISTURBING FUNCTION

The disturbing function consists of a secular partproduced by the zonal harmonics k_ and k4_ and

a periodic part produced by the ellipticity of the earth's equator. The periodic disturbing function has

the form

3 ,_A22

F, = 2 r s (x2-y2) " (1)

The x-axis is directed along the semi-major axis of the equator, and the z-axis is directed along the

axis of rotation of the earth. Substituting

x 1 + cosi 1 - cosi

r 2 cos ( f +_,+f2-n't} + 2
cos (f +w-f}+n't) '

y _ 1 + cosi 1 - cosi
r 2 sin(f +co+_-n't} - 2

sin(f +_-fl+n't) ,

Z

-- : sin ( f + w) sin i
r

*This report has been published in substantially the same form in ]. Geopbys. Res. 67(3):1123-32, March 1962.



into Equation 1, we obtain

3 _A22

F 1 - 8 a3

3

(l+cosi}2 (a) cos(2f+2oJ+2_-2n't}

-- sin 2 i cos (2_- 2n't)
+ _- a3

-- (1-c°si)2 (r] cos(2f+2_-2_+2n't) •+ _ a 3

Developing Equation 2 into a series in terms of the mean anomaly l with coefficients developed in

powers of the eccentricity, and retaining the long period terms only, we deduce

FI = Q0c°s(2/ +2w+2_-2n't)

+ Qzc°s(2l +2_-2n't) + Q2c°s(2/-2w+2fl-2n't) ' (3)

where

3PA_2 ( S e2 13 e4 2_8 )= -- (l+cosi) 2 I--_ + _- - e 6 ,Qo -_ a 3

t= -- sin 2 i _- + _- + -- e 6 'QI 2[ a 3

Q2 = E--_- (l-c°si)2 e4+ 2_ e "

If the mean motion of the satellite is such that it causes the satellite to remain above a particular

longitude of the earth for some time, the first term in Equation 3 is the most significant, and will be

treated in accordance with the theory of resonance. The last two terms will produce only small, long

period terms in the osculating elements.

The coefficient A2= is approximately of the same order as the coefficient of the fourth zonal har-

monic, and consequently, the secular part F0 of the disturbing function need not be developed beyond

the results established by Brouwer (Reference 1). Adding the term n'}/-;,a( 1-e 2) cos i, produced by the



rotation of the earth to Brouwer's development, we have

+0 +2 + "It + L---+_G+- _ + +_

+°k+('+'+'°'++)I,"++H+)+_- m-_ - i+ _ -io _- + +-_

_+k_ I 15 LS (18 H 2 H+_+--_- +_- 1--s,-_-+_+/

( +)3 L 6 I"[ 2

+_ J.-6_+9_ -

where L, G, and H are Delaunay variables

_:¢_, _: ¢_a(1-°_/, _: ¢_a,-e_)_o_,

and k 2 and k 4 are the coefficients of the second and fourth zonal harmonics, respectively.

Considering the form of the main argument, it is more convenient to use the canonical set of

Poincare rather than that of Delaunay.

Thus

x I : )f_ : L, Yl

x_: ¢_ (_-_)= _-o,a_ y_

: / + w + fl- n't ,

= - _, and

: - f2 + n't.

>- (4)

'The complete Hamiltonian is

F = FO + FI , (5)

but the disturbing function can be expressed more conveniently by means of theauxiliary quantities



Xx,E,and)I, where e = x2/x I , T = 1-x3/xr And the following relations exist:

L = X 1 ,

G
-_ = 1-_,

H T
= cosi = I - • '

and

e 2 = 2_ - E 2 .

The following expressions were used in the actual computations:

#,2

F 0 : nl,YXl +-

2x t2

#4 k2

/z 6 k_

lo
x I

3 3
(4+14e +19e _-21E 3) - _,2 (16+114e +459e 2+1371• 3)32 i_

3 p )]+ ]-_ (76+790e +4515•2 +18755e a

+-_iyd- (2+20e+95• 2+315e 3) - y2 (2+24e +141• 2+573• 3)

5 74 (14 + 196e + 1365• 2 +6545e a) ] ,+i-6

Oo

QI

Q2

_4 A22

1 (36 144e +63E 2 89e 3)-180e+207e2-152E3) + _'_'Y -

+ _ (36 - 108e -45e 2 - 134e 3



The first and second derivatives of Fo and qo with respect to x, can be obtained by using the expression

3F 1 - 7 OF • aF
F' = _ + -- _'_--- _-_ 'X 1 X 1

from which we obtain:

, , ____=3_'k_
Fo = . -x/+ 2x?

Fo" = + 3_ 2 _4k2 [
x: xl s 3(

[(2+7e+16es+30e 3) + 2)" (1+Se+15Es+35• 3) - y2 (8 +45•+150E2+385_3)]

3 (16+114•+ 13,1•3)
x'_ (40 + 1546 + 228• = - 273• 3) + _-

9 7"2 (64+494•+2142c 2+6855_ 3) 3 s- -_'7 (76+790e+4515e =+18755_ a)

3 "X4 (1064 + 11850e + 72240e 2 + 318835•3)1+-3-_

;z6k4 [15
"_1_ _ (4+44• +228•=+819• 3 ) + -4-15Y (2+24•+141,2+573e3)

_ 4s87= (s+ 104_+688,2+2868,3)- _ 7`3(2+28•+198•_+938_3)

35 7`4 (28 + 420e + 3120e 2 + 15895•3)1+1-6

6+ 23•+57•2+115• 3 ) + 67` (8+45e+150• 2+385• 3) - 9")' 2 (12+75•+275e2+770_3)]

9 (128 +988e + 4284e 2 + 13710e s)/.t6 k_ 3 (188 +696• + 564• 2 -4653e 3) + "_ "y

9 7"2 3 7"3- _- ( 340 + 2668e + 11550• 2 + 36085e 3) - X ( 1064 + 11850• + 72240• _ + 318835• 3 )

45 7),4 ( 532 + 6320e + 40936e _ + 191301•3)]+T_

'u" k4 [__ 45 (8 + 104• + 658•2 + 2865ea )+ -- (6+72• +400E 2+1529e 3) + -T 7"
xll 2

15 72 (142+ 1988e + 13440•2 + 62215• 3) - -_ 7"3 (28+ 420e+ 3120e2 + 15895e 3)--4-

525 7,_ )]+ T (14 + 224e + 1768e 2 + 9537e s ;



Q0' 'LL4 A22I_ __ (72- 4_6E + 76562

x 1 ?

3
- s95_) +-_ :_(6- 29_+17_2-21__)

1 q

+_ >2 (144 -486e - 225_ : - 737e3)l
J

Q0" = + x-_8-
1 (720-4212_ +3285_ 2 3421_ 3)2844e +6273e 2 - 5194¢ a) + _ 7

1 _, )1+ _ ( 432 - 1620_ - 825_ 2 - 2948c 3

If only the secular and the first, most important, periodic terms of the disturbing function are

retained, we have:

F = Fo + Qo cos 2y I . (6)

The libration points and the points lying on the intersection of two branches of the separatrix are

determined from the equations

OF OFo OQo

- + 2y l3x I Ox 1 _ cos

and

3F

Oy 1 2 Qo sin 2y t

if the values of x 2 and x 3 are fixed. From Equation 6 we deduce that

_Fo 300

_x, + 3x I - 0 (7)

for Yl : 0, 77, (8)

_Fo _Qo

_x, - _x, = 0 (9)

"rr 3"rr
for Yl - 2' 2 "

(10)

The values y = n/2 , &z/2 reduce the disturbing function (Equation 5) to a minimum. Consequently,

they correspond to the stability position and determine the libration points. The set y, = 0,_ gives



the points on the separatrix and corresponds to unstable positions. For satellites moving in the

equatorial plane the stable positions are on the equator's minor axis, and the unstable positions are

on the major axis (Reference 2). It is convenient in the complete problem, as defined by Equation 5,

to retain the development around the characteristic points defined by Equations 7 through 10, and to

write the disturbing function in the form

F : r 0 + R 1 '

where

R0 = Fo - Q0 '

R 1 = 2Q0 cosay 1 + Q, cos (2y 1 + 2y2) + Q2 cos (2y, +4y2)

for the stable case, and

Ro : Fo + Q0 ' (11)

r! - - 200,_-'_, + Q,_o,(2_,+_,) + Q,_o, (2_,+4_,)
(12)

for the unstable case.

The canonical transformation (Equation 4) removes the time and the argument Y3

turbing function. Consequently, this problem contains the energy integral

R o +R! = -C,

from the dis-

(13)

and the integral

x,

is constant.

THE STABLECASE

By substituting x, = aS/ay,, and x 2 : aS/ay 2 into Equation 13, we transform it into a Hamilton-

Jacobi partial differential equation. Letting

S = S O + SI (yx)+ S, (y 1 , Y2) + $3 (YI, Ya) "'" '



C = CO + Cl + C2 ÷ C3 + "'" ,

and

So -- al Yl + a2Y2 + ct3 Y3 '

where a I and a2 can be considered as two constants" of integration. We replace the partial differential

Equation 13 by the system of Bohlin's equations (Reference 3). These may be deduced by developing

the left-hand side of Equation 13 into a Taylor's series about al, a2, a3:

Ro (a,, a s, a3) = - CO , (14)

-- --- + 2Qocosayl + Qlcos (2yl+2y2) + Qacos (2yl+4y2) = 0 ,
Wol Oy a + -_ Wao \Oyl} + Wlo ay I

(15)

OS3 /' OSl_OS 2 OS, as 2 _ [os,_ s

aSl _

+[ 2Q0' C°S2Yl + QI' cos (2Yl+ 2Y2) + Q2' cos (2yi+ 4y2) ] 0y I C, , (16)

where

0i+JRo (a I, a 2, a3)

Wij =

and

0% (_,, _, _,)
Qil =

Oa I

Equation 14 can be considered as a defining equation for Co .

Imposing on our solution an additional condition- that no secular term with respect to Y2 is con-

tained in S,, S2, S3, ..... , but only in S0- we deduce from Equations 14, 15, and 16 that

s, = _, (y,) ,

QI Qa
$2 = _b2 (Yl) - _ sin (2y I + 2y2) - 4w0--_sin (2Y1 +4y_) '

8



and also

1 ,2 = 0,
_-W2o 41 + Wto q5I' + 2Qocos2Yl (17)

1
q52' (wlO + W2o ¢1') + -_ W3o q51'3 + 2<#1, Qo' c°s2yt

From Equation 17, we have the standard first approximation

_1' = -w +A,

: - C 1 • (18)

(19)

where

w l0

w20

and

4Q °A = ± w2 - -- c°s2 Yl (20)
W20

If

4Q o
>1,

W20 W 2

then cosy1 oscillates between the limits-(w/2) (_---_-_).+ (w/2)(F_-_). This

can be written in the form:

(21)

condition (Equation 21)

(Fo'-Qo')' - 4Qo(Fo"-Q;) < o, (22)

(where, in this case, the primes represent differentiation with respect to a_), together with the

condition

Fo' - Qo' ) 2

c°s_Y, < 400 (Fo"-Qo")

which, for a certain moment of time, must be fulfilled for the motion to be stable. By eliminating ¢t'

and cos2y_ from Equation 18 by means of Equations 19 and 20, we can write an expression for _2' :



The divisor Ain the last term may becomezero. Therefore, to removea sourceof possibledis-
continuity,we set

/__,w,o, _
CI -- \6 -- + _ w3 '

(23)
*2° %/

and 92' becomes a polynomial in A which, taking Equation 20 into account, can also be written as

_2' = - -3- w2-'--o + W2o Qo/-_2o + W2o Qo/w2o cos 2y I + _-\W2o qo wA "

Setting

2 W3o (1 W3o Qo"_ QoA0) = - w- 3w-- + _oo/ ' (24)W20 w20 w20

[ '(A<_ = *+2 *20 Qoo]* (25)

I ,/1A(3) - 1 + - > 0 , (26)
*20 2 \W_o -%o

A(,b Q° (51_-w3° 1 Qo'_= w2---_ w2---o - 2 -_o/' (27)

A_s) _- _--QI , (28)
2Wo I

Q2

Ace) = - _ , (29}

t_A (i)

-._-_-.-. - Aj(i) ,
J

c)C
-- n, t

Jat J

11A AJ($)15- /_-A(_ -_7/ = Mj , (30)

10



weobtaintheHamiltonianfunctionSwith its integrals in the form:

S (a I +A(D) Yl + asya+a3y3 ± f ¢ A(2) - A(3) cosSyldyi

+ A(_>sin 2y, + A(_sin (2y,+2y=)+ A(_sin (2Y1+4y_)

and

x 1

3S

- 3y I
(c_I + AO)) ± }/A(=) - A(3) c°s2 Yl

+ 2A (4) cos 2y, + 2A (,)cos (2y I +2y=) + 2A (O cos (2y, +4y=) '

(31)

0s
- a 2 + 2A (s) cos (2Y1+ 2y=) + 4A (6) cos (SYl +4y=) 'x= - ay a

0s
_ = O. 3 )x3 3y 3

(32)

as
- t+fll

0a I nl = (I+AI(I)) Yl ± M1 A(a) c°s=Yl

1 AI(3) f CA(_ - A (s)
±-_-_ cosSy 1 dy I

+ AI(4)sin2y I + AI(S)sin (2y 1 +2y=) + A1(6) sin (2y I +4ya) ' (33)

fl_._S = A (I) + :i: M=I dYlola2 n 2 t + /_2 Yl Y2 ¢A(2 ) _ A(3) cos2y I

As(_)1
J CA (2)- A(_ cos _yl dyl±_-_

+ A (4)sin2y I + A (s) sin (Sy I +Sy=) + A=(6)sin (2y I +4y=) '

f dY 1
as

= = Aa0) + + M31
aa 3 n 3 t + /33 Yl Y3 J CA (2)- AO)COSSYl

1 A3(S) fCA(m A(3) =± -_ -X_ - cos Yl dYl

+ A3(4)sinSy, + A_(s)sin (2y I +2y2) + A(_) sin (Syl+4ya) •

(34)

(35)

ii



In this representation the terms containing Y2 in the argument are of the first order with respect

to the paramater k s. In addition, these terms contain even powers of the eccentricity as a factor and

consequently, will be small from the start; the computation of the second order term in k s with the

argument Y2 shows that it can be neglected. All quantities can be considered as functions of n i t +/3 i,

(i = 1,2,3) but, of course, only Y2 and Y3 will have a secular term, since Yl does not possess any

such term.

It is not difficult to continue the process of computing s, if necessary. However, taking present

day knowledge of the numerical values of geodetic parameters into consideration, it was found that

even the development of Equations 31 through 35 proved to be accurate -from the practical point of

view- overly accurate. In this solution R, was originally considered to be of the second order with

respect to wl0. It must be pointed out that this classification is purely formalistic, and loses its

significance after the development is completed. The important characteristic of the solution is that

it can be developed into a series in w, with the coefficients depending upon %, %, %. The develop-

ment is not made in powers of{_ 2 as might be expected. This feature was observed initially by Izsak

(Reference 3) in his solution of the critical inclination problem.

The method presented here does not introduce the small divisor A in the determination of ¢. which

appears in the expression for s :

S = ¢, (Y,) + trigonometric terms in Yl and Y2.

Every 9,' will be a polynomial in A, if the constant of energy C is decomposed properly, to remove

the poles with respect toA. This can be easily shown by applying the "from n to n + 1 proof," since

the equation for the determination of qv' has the form:

a . . i •

qbn' w20 A + Pn (_1'' 002 ' " ' q_n-1' c°S2Yl) = Cn - 1 '

where Pn is a polynomial in _i',¢2' , "" , ¢.'-1 c°s2yl ' The elimination ofcos2yl, by means of

Equation 17 and the proper determination of Cn_,, will lead to the representation of Cn' in polynomial

form, providing it has been shown that ¢1', ¢5' , "'" , q_°'-, are polynomials in A. Eliminating higher

powers of A in favor of cos2 Yl, we deduce that

where a, and _, are polynomials in cos2y I with polynomial coefficients in w. This result is similar to

that obtained by Izsak (Reference 4) for the critical inclination problem. For the partial derivative

of S with respect to Y2 we have

3s n
0y 2 = Tn(°) (Yl' Y2) + ATn(')(YI' Y2) '

where Tn_) and T, (1) are trigonometric polynomials in 2y I and 2y 2 with polynomial coefficients inw.

When integrated, this has been found to be purely trigonometrical with respect to Y2.

12



In the stablecaseYl will havea longperiod oscillation about 7T/2 or 3_r/2. It is also of interest

to know the approximate period of this deviation in longitude. From Equations 23 through 29, we have

l w 30

- _ w + O (.2) , (36)Al(t) = - 1 "_ w2 °

A(_) : 2w _ w3° 3 Q°']+ L*=o- -%o] *' + o (.') , (37)

AIO)

A(3) = O (w) , (38)

t _3o_3 Qo'-_
M, -- w+_ LW2o WJ w2+°(w') , (39)

1 QO _

_ - _ * " (40)

Neglecting small long-period terms, we can write, from Equation 32, the expression for the period of

libration T :

n=T = 2 (1+ A(')) [arc cos (1) - arccos (-l)I

M 1 I c°s- 1(l/k)

+ :2 A---_ Jcos_ 1(_1/k )

AI(3) I c°s-l(l/k)
+ -_ _ j¢o _l(_l/k)

dY t

_I + k 2 cos 2 Yl

//1 - kacosayl dy I

where

Setting

A(_ 4Qo
k a = _ =

A(_ w2W2o

k cos Yl = sin u ,

13



we have

cos-l(l/k)

I dy 1
¢1 - k 2 cos 2 Yl

•Jcos- l (-I/k)

2 du

= --_ I I

V'- --:" sin 2 u
k _b o

= -_K ,

and

cos- l( I/k ) _vT/2

2 oo_2udu¢ I1 - k 2cos2yl dy I = - _ I

_1 - sin 2 uJcos-l(-i/k) J0 7

= - "-_K - 2k g -K ,

where K(1/k) and E(1/k) are the standard elliptic integrals of the first and second kinds having

the modulus l/k. In terms of the new variables,

[11

V

2 (l+Al(')) [2 arc cos(l) _ 7r] - 4L__ M I + 1 AIO) El

(41)

Substituting Equations 36 through 40 into Equation 41 yields:

+..0 o .n IT = --Sw_---_w

Equations 14 and 23 give the expression for C = Co +C1, from which

-, = 7a-_ - w.w x-2-_o\*,o g/*

and

W -- ÷ + o (_) • (42)

In order to find the period in the vicinity of the libration point, we expand Equation 42 in powers

of 1/k. Since w approaches zero as the libration becomes smaller,

1 writ
-_-- +_l/W_ -o;

v -u

14



and for small values of I/k,

and

(4 . , , 1cos-I = ._-_-_-_+ ...6 k 3

Consequently we deduce that

-- - 'l -- gO

UNSTABLE MOTION

(') "( " 1K : -_ t+_-_+ ....

I_,o Q0' l(W3o Qo'\77.--:+_-_t_ +_-Vo;jr+o(_).

If the condition (Equation 22) is not satisfied, the motion is unstable and the Hamiltonian function
takes the form

F = R o + RI ,

with Ro and R 1 defined by Equations 11 and 12. Performing operations similar to the previous ones,
we find that

,--(o, +B<,>),, +o:y+%,,+jr,<, +,<,.,.,.,_,,

where

2 2 w3__._O ¢1 w30 Qo'/ Q 0

_c,_: _ _,_ _-w W_o _-z77_o-WlW_ ' (43)

B¢_>= w_[l+'( w3° Qo']7=_-__'_-_- _i_'J ' (44)

B(_) -- _ 1 + 2t_2o > 0, (45)

1 Qo__'_Q____o
w_ 2 Oo/w2o '

15



Q1

and

Q2

B(6) = _ 4Wol

Despite the similarity between some A's and B's, they are not identical since different values of

_0 are used in each ease. The constant of energy has the same analytical form as in the stable case:

c = - Ro (%, %t + _ +_ ' (461

Thus we have, as in the previous case,

xl = al + B(D + CB (2) + B(a)sinay I + 2B (4)cos2y I + 213(s)cos (2y I+2y2) + 2B(e cos (2yl+4y2) ,

x 2 = a a + 2B (s)cos (2y I +2y2) + 4B (6) cos (23'1 +4ya) ,

X 3 = _3t

and, putting

OB (i)

B/i) = Oa I

:/

we have, designating by the additive constants of integration ill, fla, ¢?a :

I . BO) r
dYl _ -I I_/B(_ B(3)+ sina Yl dYl

nlt + /31 = (1+B10))y I + N 1 ¢B<2) + B(a)sin2Yl B(3)J

+ B:) sin 2y I + B (s) sin (2y I +2y2) + Bile)sin(2y, +4y_) ; (47)

16



n2t + _2
I dy,= B_(D Yt + Y2 + N2 CB (2) + BO) sin 2yl

1 B20) f
+ _ -_-j¢ 1](2) + B (3) sin2y 1 dy I

+ B2(4) sin2y I + B203 sin (2y 1 +2y2) + B2(6) sin (2y I +4y2) ;

I 1 B3(3) l"
dYl + _ -_- J_B (2) + BO) sin2y I dy 1

n 3 t + _ = B30) Yl + Y_ + N3 ¢ 13(2) + B(3) sin2Yl

+ B3(4) sin 2y, + B3(S)sin (2y, + 2y2) + B3(6) sin (2y 1 + 4y2) '

In the unstable case

B(2) + B(3) sin2 Yl > 0 (48)

and the square root of Equation 47 (and its reciprocal) may be developed into a Fourier series in

2yl; the argument Y l will possess a real secular term, which is absent in the stable case. The

coefficient of Yl in the right side of Equation 46 is

2NI fn/2 dY 1 1BICJ) r_r/2 B(2) + BO) sin2Yl dYl

(49)

Substituting in the integrand

Yl = "2" - ¢ '

and

B O)
k2 -

B (2) + BO)

we reduce the integrals to the normal form and Equation 49 becomes:

2KN l E BI(3)

P = 1 + B,O) + +-- .--

B}/B_ + BO) _ B_)

_ + BO) , (50)

17



where

_v/2 d_
K(k) :

o ¢1 - k 2 sin 2

and

,n/2E(k) = ¢1 - k 2 sin2¢ d_ •
"0

Taking Equations 43, 44, and 45 into account, we further deduce that

1 W3o
B1(1) = - I - _ w -- + O-w2)'',/ I

W20 (51)

(52)

B (3)
-- = O(w) ,
BO) (53)

and

1 wso Qo
Nl = w+_ -3 w2 +O(w 3)

(54)

It follows from Equations 50 through 54, neglecting the terms of the second order in., that:

P 1 Wso 2k'K ( Qo')= -_w--+-- l-
w20 _ % (55)

,¢here k' is the complementary modulus, k 2 + k '2 = 1, and

k t I °°/]1 + °

CB(_ + B (3) 2 \W2o _o

From Equation 46, neglecting terms of the third order, we have

% - o% _o +5\.2o +3 -%o/w2 " (56)

18



Using Equations 54 and 55, we can compute the mean motion v, = n,/P O[ the argument y, with an

accuracy up to the terms of the second order in w. The value of _1 denotes the speed with which the

satellite will depart from its original position over the earth's surface during the course of time.

CONCLUSION

The theory of motion of a 24-hour satellite under the influence of the ellipticity of earth's

equator has been developed using a resonance theory. The expressions for the elements of motion

can be represented in the form of a series with respect to the parameter w, which would be closely

associated with the mean motion of the main critical argument In-n') t + ;_ +_ in a nonresonance case.

Canonical elements and the Hamilton-Jacobi partial differential equations were used to solve the

problem. This method of solution was chosen because of its flexibility with respect to the form of the

integration constants which are adjusted so as to remove small divisors from the solution.

The conditions are established for stable and unstable types of motion; no severe restrictions are

imposed on the values of inclination or eccentricity. The formulas are developed to the point where a

numerical development can be easily accomplished for any particular case. Using this method, an

extension of Hori's critical inclination theory (Reference 5) can be easily obtained. The method

described herein can also be applied to a more general case. If the ratio of mean motions is

n/n' = l/p, and not n/n' = 1 as in our case, the theory given here can be easily extended by using the

set of canonical variables:

xl - --p---' Yl = pl + fi + ca - n't ,

x 3 = - cos i ' Y3 = - ;) + nat •

Comparing this theory with observations can help to better determine the coefficient of ellipticity

of the earth's equator.
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